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In this paper we first describe the current method for obtaining the Camassa–Holm
equation in the context of water waves; this requires a detour via the Green–Naghdi
model equations, although the important connection with classical (Korteweg–de
Vries) results is included. The assumptions underlying this derivation are described
and their roles analysed. (The critical assumptions are, (i) the simplified structure
through the depth of the water leading to the Green–Naghdi equations, and, (ii)
the choice of submanifold in the Hamiltonian representation of the Green–Naghdi
equations. The first of these turns out to be unimportant because the Green–Naghdi
equations can be obtained directly from the full equations, if quantities averaged
over the depth are considered. However, starting from the Green–Naghdi equations
precludes, from the outset, any role for the variation of the flow properties with depth;
we shall show that this variation is significant. The second assumption is inconsistent
with the governing equations.)

Returning to the full equations for the water-wave problem, we retain both par-
ameters (amplitude, ε, and shallowness, δ) and then seek a solution as an asymptotic
expansion valid for, ε → 0, δ → 0, independently. Retaining terms O(ε), O(δ2) and
O(εδ2), the resulting equation for the horizontal velocity component, evaluated at
a specific depth, is a Camassa–Holm equation. Some properties of this equation,
and how these relate to the surface wave, are described; the role of this special
depth is discussed. The validity of the equation is also addressed; it is shown that
the Camassa–Holm equation may not be uniformly valid: on suitably short length
scales (measured by δ) other terms become important (resulting in a higher-order
Korteweg–de Vries equation, for example). Finally, we indicate how our derivation
can be extended to other scenarios; in particular, as an example, we produce a
two-dimensional Camassa–Holm equation for water waves.

1. Introduction
From the earliest days in the development of what we now commonly refer to

as soliton theory, many competing soliton-type models for water waves have been
suggested, a few of which have origins that pre-date the solution of the Korteweg–
de Vries (KdV) equation. These models have attempted to capture one aspect or
another of the classical water-wave problem, and not all the resulting equations are
susceptible to soliton techniques. Nevertheless, this has often been the driving force
behind these various investigations in recent years. Thus, even in the context of the
simplest physical model for water waves, there are many variants of the Korteweg–de
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Vries (KdV) equation:

ut − 6uux + uxxx = 0, (1)

for example, in two Cartesian dimensions, in cylindrical geometry or for head-on
collisions. (A description of these KdV-type equations can be found in Johnson 1997;
we present the various equations, at this stage, in a normalized form, merely as
exemplars of what can be obtained; x and t have the usual interpretations.)

In addition, there are other models that do not follow the KdV route. So, for
example, we have the shallow-water equations,

ut + uux + hx = 0, ht + (hu)x = 0,

where u(x, t) is the horizontal velocity component and h(x, t) the total depth of the
water. (This pair of equations possesses an infinity of conservation laws; see Benny
1974; Miura 1974.) On the other hand, there are model equations which appear to
follow the KdV pattern, but turn out to possess fundamentally different properties.
Such an example is the BBM equation (Benjamin, Bona & Mahoney 1972, and first
used in Peregrine 1966), sometimes called the regularized long-wave equation,

ut + ux + uux − uxxt = 0. (2)

More recently, an equation with an involved pedigree, but intriguing solutions, has
appeared on the scene: the Camassa–Holm equation. This equation, in the same vein
as above, is typically written as

ut + 2κux + 3uux − uxxt = 2uxuxx + uuxxx, (3)

where κ is a parameter; most consideration has been given to the case κ = 0 for which
peaked solitons (‘peakons’) exist, which have excited some interest in soliton theory.
Indeed, this equation was first introduced by Fokas & Fuchssteiner (1981) as part of
a study of some general aspects of this theory. Equation (3), for all κ, is an integrable
equation; see Camassa & Holm (1993) and Constantin (2001) (and also Cooper &
Shepard (1994), where travelling-wave solutions for various κ are described). This
equation incorporates nonlinear dispersive terms (the right-hand side of the equation)
in addition to those terms associated with the BBM equation, (2). Other equations,
which bear some similarity to equation (3), also exist, but they are not relevant to the
route we follow here; see, for example, Fornberg & Whitham (1978) and Rosenau &
Hyman (1992). Much of the conventional background that provides a setting for the
Camassa–Holm equation, and its connection with other similar nonlinear equations,
is well-documented in Camassa, Holm & Hyman (1994).

We have alluded to the background of the Camassa–Holm (CH) equation. In the
context of water waves, there appears to be no satisfactory basis for regarding this
equation as a valid approximation obtained from a systematic (asymptotic) procedure
applied to the full governing equations. Although a brief description of a procedure
which appears to mirror our approach is given in Fokas (1995), this analysis seems
to suppress the dependence on the vertical coordinate (z); we shall demonstrate
that incorporating the correct z-dependence is critical in providing a complete and
accurate account of this problem.

In this paper, we will first describe the current procedures for deriving the CH
equation and, where useful, relate this to the – now classical – results that obtain for
the KdV equation. This will necessitate an excursion in the direction of the Green–
Naghdi equations (Green & Naghdi 1976), in one spatial dimension and as specific for
our problem, together with a particular submanifold selection within a Hamiltonian
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description. This approach will enable us to make clear the various shortcomings
of these models, and will emphasize the critical assumptions that must be made in
order to proceed. In passing, we will also present the corresponding higher-order
KdV results that are, in a sense, an analogue of the CH equation. We will then show
that the Camassa–Holm equation does indeed arise in the water-wave problem, but
under a careful limiting process and by working with u(x, t, z) the horizontal velocity
component, for a particular z.

Some properties of this equation, and how it relates to the description of the surface
wave, will be discussed. It will also be suggested that the equation cannot always
be expected to constitute a uniformly valid approximation even on the appropriate
time and spatial scales where the balance occurs. This is because certain types of
initial data are possible which indicate that higher-order spatial derivatives may be
required. This might lead to the appearance of an appropriate higher-order KdV
equation, as will be described. Finally, the possibility of extending the calculation to
different scenarios is addressed; as an example, a two-dimensional Camassa–Holm
equation (for water waves) is derived.

2. Governing equations
Our vehicle for describing a problem for which the CH equation is proposed

as a model is wave propagation on the surface of water. The simplest scenario
is that modelled by an inviscid fluid of constant depth, which is stationary in
its undisturbed state; the effects of surface tension are also ignored. We take the
governing equation to be Euler’s equation (in two dimensions) with appropriate
surface and bottom boundary conditions. This problem is non-dimensionalized using
the undisturbed depth of water, h, as the vertical length scale, a typical wavelength
of the wave, λ, as the horizontal length scale, and a typical amplitude of the wave,
a; see figure 1. It then follows that the appropriate non-dimensionalization for the
horizontal velocity component is

√
gh (where g is the acceleration due to gravity),

with a corresponding time, λ/
√
gh. The resulting non-dimensional equations contain

two parameters: ε = a/h, the amplitude parameter, and δ = h/λ, the shallowness
parameter. When we write the surface as z = 1 + εη(x, t; ε, δ), and let p be the (non-
dimensional) pressure relative to the hydrostatic pressure in the undisturbed state, we
have the equations

ut + ε(uux + wuz) = −px, (4)

δ2{wt + ε(uwx + wwz)} = −pz, (5)

ux + wz = 0, (6)

with

p = η, w = ηt + εuηx on z = 1 + εη, (7)

and

w = 0 on z = 0. (8)

(Subscripts denote partial derivatives throughout.)
We comment, for future reference, that the parameter δ can be removed from these

equations, as is well known. That is, when we transform according to

x =
δ√
ε
χ, t =

δ√
ε
θ, w =

√
ε

δ
ŵ, (9)
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Figure 1. Defining sketch for the variables and scales used in the water-wave problem.

the equations (4)–(8) are recovered, but with δ2 replaced by ε in equation (5).
Then, for arbitrary δ, we have the region of (x, t)-space where, for example, the
linear, non-dispersive wave dominates as ε → 0, i.e. where χ = O(1), θ = O(1).
(This transformation, (9), is equivalent to using h alone as the length scale in the
problem.) Of course, the role of δ (independent of ε) in the original equations is
still useful and important in the description of, for example, non-dispersive, but
arbitrary-amplitude waves, i.e. δ → 0, ε fixed. We shall see that each choice makes
an important contribution in the story that unfolds. Finally, a familiar interpretation,
which reinforces the importance of the relative roles of ε and δ, is that of initial data
which defines a suitably small ε and which then steepens as it evolves. When the local
size of ε (measuring the slope of the front) is about the size of δ2, then a balance
ensues between nonlinearity and dispersion; this balance is essentially that given by
the far-field description presented below (via the variables (10)).

First, before we explore the various new avenues in this problem, we comment
briefly on the familiar and classical results that follow directly from equations (4)–(8).
Consider the equations with δ2 replaced by ε (by using (9)), then the leading-order
problem, as ε→ 0, is simply

uθ = −pχ, pz = 0, uχ + ŵz = 0,

with

p = η, ŵ = ηθ on z = 1

and

ŵ = 0 on z = 0.

These give, directly,

p = u = η, ŵ = −zηχ (0 6 z 6 1)

with

ηθθ − ηχχ = 0,

(where we have assumed that u = 0 wherever η = 0); this solution describes the
linear, non-dispersive surface wave. If we now follow the right-going wave, say, and
examine the problem in an appropriate far field, i.e. introduce

ξ = χ− θ, τ = εθ, (10)

into the full equations, (4)–(8), then the leading-order surface wave satisfies (for
ξ = O(1), τ = O(1)) the KdV equation

2η0τ + 3η0η0ξ + 1
3
η0ξξξ = 0, (11)
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where η(ξ, τ, ε) ∼ η0 + εη1, and

p ∼ η0 + ε{η1 + 1
2
(1− z2)η0ξξ}, (12)

u ∼ η0 + ε{η1 − 1
4
η2

0 + ( 1
3
− 1

2
z2)η0ξξ}, (13)

as ε → 0. This result demonstrates that the balance required for the existence of the
KdV equation will always arise in some region of physical space, subject only to the
condition ε → 0. This is to be compared with the derivations based on the special
assumption δ2 = O(ε), which would suggest that the KdV balance will occur only
rarely. We note, for future reference, that the dispersive terms (represented by the
derivatives of η0 with respect to ξ, beyond the first) contribute to both the pressure,
(12), and the horizontal velocity component, (13). Further, these terms (η0ξξ) are
intimately connected with the z-structure of the problem arising, essentially, because
pz is no longer zero at this order. Finally, although the equation for η0 is completely
determined (equation (11)), the term η1 is arbitrary at this stage of the calculation;
the equation for η1 can be found by continuing the procedure (as we shall mention
later).

With these familiar equations and ideas in place, we may now turn to the main
issues that we wish to address here.

3. The Green–Naghdi equations
In order for us to provide a description of the conventional position of the CH

equation within the context of a water–wave model, we first require a reduced version
of the Green–Naghdi equations. These equations were developed (Green & Naghdi
1976) within the framework of rather general considerations of continuum mechanics,
coupled with one approximation. Here, we present a derivation of the relevant form
of the Green–Naghdi (GN) equations, which follows directly from equations (4)–(8),
and is the starting point for our discussion of the CH equation.

In our governing equations, (4)–(8), with δ retained, we assume that u is not a
function of z. This, we know, is not correct at O(ε) (see equation (13)), but this
approximation is valid for the leading-order problem. This assumption is equivalent
to the simplifying approximation used by Green & Naghdi (namely, that w is linear
in z in a single-layer model), which these authors are careful to relate to conventional
KdV derivations. Thus we have, from (6),

w = −zux,
which satisfies the bottom condition, (8). Then equation (5) leads to

p = η − 1
2
δ2{(1 + εη)2 − z2}(uxt + εuux − εu2

x), (14)

which satisfies the pressure condition at the surface. This expression for p is now used
in equation (4), which is then integrated over all z to give

ut + εuux + ηx =
δ2/3

(1 + εη)

∂

∂x

{
(1 + εη)3(uxt + εuuxx − εu2

x)
}
. (15)

A second equation relating u and η is simply the mass conservation equation obtained
by also integrating equation (6) over z, to produce the familiar result

ηt + [u(1 + εη)]x = 0. (16)

Equations (15) and (16) are the GN equations as relevant to one-dimensional wave
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motion over a flat, horizontal bed. This pair of equations is the usual starting point
for a derivation of the CH equation; see, for example, Camassa et al. (1994), although
we have written our equations in non-dimensional scaled variables and therefore have
retained both parameters, ε and δ

The GN equation, (15), can be obtained by a different but more satisfactory
route, although appropriate simplifying assumptions are still required. Formulating
the problem for η and the average of u (ū, say) taken over the depth (exactly as we
introduce in (30) below), Su & Gardner (1969) show that the GN equation, (15), is
recovered. This derivation invokes irrotationality and necessitates that higher-order
terms are neglected; these arise, for example, when estimates are made for terms such
as u2. The GN equation that we use, (15), is exact, under the assumption that there
is just one layer and that, through it, w is linear in z. As we shall describe here, in
whatever form we derive them, the GN equations do not lead, systematically, to the
CH equation because, we argue, the detailed behaviour through the depth of the fluid
is suppressed, and this is essential for a comprehensive description of the problem.

4. The Camassa–Holm equation
The conserved energy for the GN equations, (15) and (16), is

H =
1

2

∫ ∞
−∞
{(1 + εη)ε2u2 + 1

3
ε2δ2(1 + εη)3u2

x + ε2η2} dx, (17)

for which the variational in u yields

δH

δu
= ε2(1 + εη)u− 1

3
ε2δ2 ∂

∂x

{
(1 + εη)3ux

}
, (18)

which we use to define the dynamical variable, m:

δH

δu
= εm, (19)

which is written in this form because, later, we must make a selection that requires
m = O(1).

From our GN equations, we can show that an equation for m can be obtained by
finding, for example, an expression for mt; this gives

mt = −ε(umx + 2mux) + (1 + εη)
∂

∂x

{−εη + 1
2
ε2u2 + 1

2
ε2δ2(1 + εη)2u2

x

}
.

Now this equation, together with equation (16), can be written in Lie–Poisson Hamil-
tonian form as(

m
1 + εη

)
t

= −
(
∂x[m+ m∂x[ (1 + εη)∂x[
∂x[(1 + εη) 0

)(
Hm]
Hh]

)
, (20)

where ∂x = ∂/∂x and the square brackets have been used to reinforce the interpret-
ation: operate on everything to the right. We may now, in principle, express the
Hamiltonian, (17), in terms of m and η, or m and u, as convenient; the former choice
yields the variational derivatives Hm ≡ δH/δm and Hh ≡ δH/δh as the coefficients,
respectively, of

δH =

∫ ∞
−∞
{εuδm+ [εη − 1

2
ε2u2 − 1

2
ε2δ2(1 + εη)2u2

x]δh} dx,
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where h = εη. This result follows by first using the definition of m in (17) to give

H =
1

2

∫ ∞
−∞

(εum+ ε2η2) dx,

which can be written as

H =

∫ ∞
−∞

{
εum− 1

2
ε2(1 + εη)u2 − 1

6
ε2δ2(1 + εη)3u2

x + 1
2
ε2η2

}
dx.

Upon taking the variation in H (in terms of δh, δu and δm), and using the definition
of m again, the above expression for δH is obtained. (The general description that we
use here follows quite closely the presentation in Camassa et al. (1994).)

The development hereafter requires the assumption that the given Hamiltonian be
expressed in terms of m and η (or m and u), and that we dispense altogether with the
defining relation implied by (18) and (19). With this interpretation in mind, consider

d

dt

∫ ∞
−∞

(
√
m− 1) dx =

1

2

∫ ∞
−∞

mt√
m

dx,

provided that both these integrals exist; this can be written, from equation (20), as

−1

2

∫ ∞
−∞

1√
m

{
∂

∂x
(εum) + m

∂

∂x
(εu) + (1 + εη)

∂

∂x
(Hh)

}
dx.

We integrate by parts and invoke decay conditions at infinity (u→ 0 and Hh → 0 as
|x| → ∞), to give

d

dt

∫ ∞
−∞

(
√
m− 1) dx =

1

2

∫ ∞
−∞
Hh

∂

∂x

(
1 + εη√

m

)
dx.

Thus, if 1 + εη ∝ √m (the proportionality being, at most, a function of t), then∫ ∞
−∞(
√
m− 1) dx is a constant of the motion (and for any Hh which decays at infinity,

we observe, provided that u also decays). The conventional Camassa–Holm approach
makes the assumption that this integral is indeed a constant of the motion. In
particular, let us write

1 + εη =
√
m =

√
1 + εµ, (21)

with η → 0 and µ → 0 (so m → 1) as |x| → ∞; equation (21) then selects a
submanifold of the Hamiltonian which describes those solutions which are right-
running waves and which satisfy the assumed form embodied in (21). (We shall write
more of submanifolds, and the correct submanifold for the GN equations, later.)

The conflict between the choice for m given in (21), and that implied by (18) and
(19), is not addressed in the various descriptions of this approach, the argument being
that (18) is set aside before we reach (20) and (21). We comment, however, that one
possible device that appears to afford some measure of consistency is to impose an
irrotational condition on the flow. This requires that uz− δ2wx = 0 and then equation
(4) implies that

∫ ∞
−∞ u dx is a constant of the motion; this follows by substituting for

uz into (4), integrating over all x and imposing undisturbed, uniform conditions at
infinity. If, now, the additional term 2εu is included in the Hamiltonian, (17), we find
that δH/δu = ε(1 +m) (and then we may work with 1 +m, m = O(ε), rather than m).

Nevertheless we proceed, and then on the submanifold given by (21), the Hamil-
tonian becomes

H =
1

2

∫ ∞
−∞
{ε2u2

√
1 + εµ+ 1

3
ε2δ2u2

x(1 + εµ)3/2 +
(√

1 + εµ− 1
)2} dx, (22)

where H is now expressed in terms of µ (i.e. m) and u.
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To complete the calculation, we follow the idea developed by Olver (1988) (and
explained more fully in Camassa et al. 1994) by first expanding µ (in ε) and then
finding the variations in u at each order, where

δH

δu
= ε(1 + εµ),

and equation (18) is hereafter ignored. This definition, coupled with equation (22),
determines µ in terms of u.

Thus, with

µ ∼ µ0 + εµ1 + ε2µ2,

we find that
1
2
Dµ0 = 1,

where D is the variational derivative, and hence

µ0 = 2u+M,

where M is any term which vanishes on taking the variational derivative, e.g. a term
∂nu/∂xn; let us write

µ0 = 2u− aδ2uxx,

where a is an arbitrary function of t; Camassa et al. (1994) then retain terms as far as
O(ε2), i.e. µ2, but eventually work with µ only as far as µ0. The resulting (approximate)
equation of motion is

mt ∼ −
{
∂

∂x
(mHm) + m

∂Hm

∂x

}
,

(since Hh = O(ε2) on the submanifold); the requirement that the higher-order terms
in the expansion of the Hamiltonian, (22), are also conserved by the flow represented
by the m which satisfies the approximate equation, leads to a = 2

3
. Now we see that

H ∼ 1

2

∫ ∞
−∞

(
εµ+ 1

2
ε2uµ

)
dx

and then Camassa et al. (1994) use this to give

Hm ≡ δH

δm
=

δH

δ(εµ)
∼ 1

2
+ 1

2
εu,

(the argument being, presumably, that 1
4
ε2uµ is essentially 1

8
ε2µ2, for which the vari-

ational is 1
4
εµ and then, by the same token, this is replaced by 1

2
εu, which certainly

follows if we invoke δ → 0).
This expression for Hm, together with

m ∼ 1 + ε(2u− 2
3
δ2uxx) (23)

gives the equation for u(x, t), from the equation of motion, as

ut + ux + 3
2
εuux − 1

6
δ2uxxx − 1

3
δ2uxxt = 1

6
εδ2(2uxuxx + uuxxx) + O(ε2), (24)

as ε→ 0 at fixed δ. This is the Camassa–Holm equation, although it is more commonly
written in the form

ut + 2κuζ + 3
2
εuuζ − 1

3
δ2uζζt = 1

6
εδ2(2uζuζζ + uuζζζ), (25)

where ζ = x − 1
2
t, κ = 1

4
here, and ε and δ are usually ignored (by scaling them
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out or, equivalently, setting ε = δ = 1). The frame represented by the choice of ζ is
simply that in which uxxx is removed in favour of uxxt. The use of this frame, however,
implies that κ 6= 0, although the selection κ = 0 is often made in studies of the CH
equation (see Camassa & Holm 1993; Camassa et al. 1994; Fisher & Schiff 1999).

5. Comments on the CH derivation
It is clear that the derivation of the Camassa–Holm equation leaves much to

be desired. In particular, the approach rehearsed here does not follow a consistent
mathematical development. Further, it is not clear whether the details of the z-
structure are relevant; certainly our equations use only average properties, in some
sense, and so the variation with depth of the dispersive contributions, for example,
is lost. This is compounded by the choice of a special submanifold which is clearly
not correct (even at this order of approximation) for the GN equations. (The usual
choice of κ = 0 is not so significant, for the CH equation is completely integrable for
all κ; κ = 0 can be regarded merely as a device for obtaining some simple results
and so, perhaps, allowing us an insight into the nature of the problem.) We will first
remove the second assumption – the choice of submanifold – and hence obtain the
appropriate unidirectional form of the GN equations.

As Olver (1988) points out, and as is self-evident, the correct choice of submanifold
is the one which recovers the solution that is obtained directly from the governing
equations. We wish to seek an asymptotic solution of equations (15) and (16) in the
form

u ∼ u0 + εu1, η ∼ η0 + εη1,

at fixed δ. The leading order is then given by

u0tt − u0xx = 1
3
δ2u0xxtt, η0t + u0x = 0,

which represents a linear, dispersive wave. The familiar approach in these problems
is to consider unidirectional propagation which is non-dispersive, to leading order, in
some region of physical space. Here, if we are in the region defined by (x, t) = O(1),
then we must select δ small; on the other hand, for arbitrary (fixed) δ – our preferred
choice – we must be in an appropriate far field defined by a suitable scaling of (x, t).
In either case, the model is equivalent to supposing that the waves are long.

The former choice yields, from equations (15) and (16),

ut + ux + 3
2
εuux − 1

12
δ2uxxx − 1

4
δ2uxxt = − 1

24
εδ2(14uxuxx + uuxxx) + O(ε2, δ4), (26a)

which can be recast as a CH equation by moving in the frame (x − 1
3
t) (which

eliminates the term uxxx), and then κ = 1
3

(see equation (25)). It is clear, however, that
equation (26a) can be written in a number of alternative forms, all valid at this level
of approximation. Thus we can use

ut ∼ −(ux + 3
2
εuux)

in the term uxxt and so produce

ut + ux + 3
2
εuux +

δ2

6
uxxx = −εδ

2

24
(41uxuxx + 10uuxxx) + O(ε2, δ4). (26b)

However, this equation now lacks the term uxxt but, as we will show, this is easily
remedied.
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The corresponding submanifold for this problem (which can be regarded as the
relation which determines η, given u, for right-running waves) is

η ∼ u+ 1
4
εu2 + 1

2
δ2(uxt − uxx)− 1

24
εδ2
(
7uuxx + 11

2
u2
x

)
. (27)

On the other hand, the submanifold used to obtain the CH equation is

1 + εη =
√

1 + εµ with µ ∼ 2u− 2
3
δ2uxx,

i.e.

η ∼ u− 1
2
εu2 − 1

3
δ2uxx + 1

3
εδ2uuxx. (28)

The two results, (27) and (28), agree only as far as the first term. (Correspondingly,
the submanifold for left-going waves is, to leading order, η ∼ −u; we could equally
elect to follow this wave.)

The second and more attractive alternative is to scale to generate a far field
(defined, for example, by (x, t) = O(ε−1/2), δ fixed). This procedure recovers precisely
the equations (26a, b), with x and t suitably redefined and δ2 replaced by εδ2; the
error is now simply O(ε3).

The most notable property of our equations for u, (26a, b), is the form of the
nonlinear dispersive terms (the right-hand side): no scaling property exists (but see
below) which will produce the right-hand side of equation (25), i.e. coefficients in the
ratio 2 : 1. This particular relation is critical for complete integrability of the equation.
In summary, a device has been invented – the choice of submanifold – which engineers
the appearance of a completely integrable equation from the GN equations. Let us
now briefly examine what happens when we dispense with the GN equations and
work from the original set of governing equations, (4)–(8).

The most natural way to proceed is simply to extend the derivation of the KdV
equation, (11). Thus, we replace δ2 by ε (according to the transformation (9), but this
will be relaxed later), introduce ξ = χ − θ, τ = εθ, and seek an asymptotic solution
(for ε→ 0)

q ∼
∞∑
n=0

εnqn (q ≡ u, w, p, η).

When we find the complete solution correct at O(ε), the surface profile satisfies

2ητ + 3ηηξ + 1
3
ηξξξ − 3

4
ε η2ηξ + 19

180
ε ηξξξξξ = − 1

12
ε (23ηξηξξ + 10ηηξξξ) + O(ε2). (29)

Correspondingly, if we define the mean horizontal velocity component, ū, by∫ 1+εη

0

u(x, t, z; ε) dz = (1 + εη)ū(x, t; ε), (30)

then ū satisfies

2ūτ + 3ūūξ + 1
3
ūξξξ + 19

180
ε ūξξξξξ = − 1

12
ε(41ūξūξξ + 10ūūξξξ) + O(ε2). (31)

This corresponds, in the absence of the fifth-derivative term, with equation (26b) and
confirms the version of the GN equations obtained by Su & Gardner (1969). Those
equations are precisely our GN equations, with ū written for u; Su & Gardner’s
approach, based on a depth-average of the full equations, omits only the higher-order
linear dispersive term. (We see that, indeed, u = ū by virtue of equation (30), when
the single-layer model with u = u(x, t; ε) is used.)

The submanifold in this case is represented by

η ∼ ū+ 1
4
εū2 − 1

6
ε ūχχ − ε2 ( 17

48
ūūχχ + 61

180
ū2
χ + 51

240
ūχχχχ

)
, (32)
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where we have reverted to the original scaled variables, (χ, θ). In the context of
the water-wave problem, and working consistently with terms O(ε) for arbitrary δ
(because the χ and θ used here have been scaled according to (9)), equation (31)
is the ‘correct’ equation (in that we have derived it directly from the full governing
equations). The obvious question now is whether it is possible to transform equation
(31) into a CH equation, at least, if we ignore the fifth-derivative term.

Equation (31), written in terms of χ and θ, becomes

ūθ + ūχ + 3
2
εūūχ + 1

6
εūχχχ + 19

360
ε2 ūχχχχχ = − 1

24
ε2(41ūχūχχ + 10ūūχχχ) + O(ε3), (33)

to which we may add (on the left, say)

εµūχχθ − εµūχχθ, (34)

for arbitrary real µ, and use (in the first term, say)

ūθ ∼ −(ūχ + 3
2
εūūχ),

if we do hereafter ignore the fifth-derivative term (and so we drop the term − 1
6
εūχχχ).

Then, for the choice µ = 7
12

, the nonlinear dispersive terms (on the right-hand side)
are in the ratio 2 : 1; however, the other coefficients cannot be scaled to recover a CH
equation. (The CH equation, in the case κ = 0, must be one of the family

ut + 3αuux − βuxxt = αβ(2uxuxx + uuxxx), (35)

where α 6= 0 and β > 0 are real arbitrary constants.) The observation that we are able
to adjust the nonlinear dispersive terms is encouraging and something that we shall
return to shortly; however, it is clear that, in order to recover the CH equation, we
require a little more freedom in choosing the coefficients. At this stage, we conclude
that the equation, (33), for ū is not a CH equation on two counts: the presence of
higher-order linear dispersion (ūχχχχχ) and the non-existence of a scaling which will
transform the other terms. (Precisely the same conclusion obtains for equations (26a)
and (26b) when this same manoeuvre, (34), is used there.) Although other equations,
similar in character to the CH equation, can be obtained from the GN equations, we
do not pursue this route here. (See Camassa, Holm & Levermore (1997) and Choi
& Camassa (1999) for some interesting ideas along these lines as they apply to wave
propagation in, and on the surface of, a fluid.) We do not follow this path because
we have already indicated that the GN equations are, through their suppression of
the z-structure, a questionable starting point.

One final observation: the equation for ū (or u, via the GN equations) contains
only quadratic nonlinearity, whereas the equation for the surface wave, η, incorporates
cubic nonlinearity. This term is eliminated between (29) and (31) by virtue of the
nonlinear term, 1

4
εū2, in the submanifold expression, (32). Thus, a solution for ū (if

such can be found), which involves quadratic nonlinearity, generates a solution for η
(via (32)) which satisfies an equation with cubic nonlinearity.

6. A Camassa–Holm equation for water waves
We return to our governing equations, (4)–(8), retain both ε and δ, and scale only

with respect to ε; then, for right-running waves, we introduce the appropriate far field
defined in terms of ε:

ζ =
√
ε(x− t), T = ε3/2t, w =

√
εW , (36)
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where we use the symbols (ζ, T ) here (cf. (9) and (10)) because δ has been retained in
the governing equations; the coordinates (ξ, τ), given in (10), already subsume δ for
they were defined after the application of the scaling transformation, (9).

The governing equations are therefore

εuT − uζ + ε(uuζ +Wuz) = −pζ,
εδ2{εWT −Wζ + ε(uWζ +WWz)} = −pz,
uζ +Wz = 0,

with
p = η, W = εηT − ηζ + εuηζ on z = 1 + εη,
W = 0 on z = 0.


(37)

In this new approach, we seek a solution of the set (37) as a double asymptotic
expansion in ε and δ:

q ∼
∞∑
n=0

∞∑
m=0

εnδ2mqnm, (38)

as ε → 0 and δ → 0, independently; here, q (and correspondingly qnm) stands for
u,W , p and η. We follow the procedure that has already given us equations (11) and
(29); in this case we obtain (for T = O(1), ζ = O(1))

2ηT + 3ηηζ + 1
3
δ2ηζζζ − 3

4
εη2ηζ = − 1

12
εδ2(23ηζηζζ + 10ηηζζζ) + O(ε2, δ4), (39)

where η ∼ η00 + εη10 + δ2η01 + εδ2η11; equation (39), as expected, agrees with equation
(29). Note, however, that the fifth-derivative term is now absent: it is O(δ4).

At this same order, where we retain terms O(ε), O(δ2) and O(εδ2), we find that

u ∼ η − 1
4
εη2 + εδ2( 1

3
− 1

2
z2)ηζζ; (40)

it so happens that no term O(δ2) arises here. In what follows, it is useful to invert
this relation to provide an expression for η in terms of u at a specific depth. Let us
select z = z0 (0 6 z0 6 1) and then write λ = 1

3
− 1

2
z2

0 (− 1
6
6 λ 6 1

3
). Thus we obtain

η ∼ û+ 1
4
εû2 − εδ2λûζζ , (41)

where û = u(ζ, T , z0; ε, δ), and we see that (41) agrees with (32) since ū (the mean)
is recovered from the choice λ = 1

6
. When we use (41) in (39), we obtain the

corresponding equation for û:

2ûT + 3ûûζ + 1
3
δ2ûζζζ = −εδ2{(6λ+ 29

12
)ûζ ûζζ + 5

6
ûûζζζ}+ O(ε2, δ4). (42)

(Again, this checks with equation (31) for λ = 1
6
.) An important new ingredient is now

evident in our formulation of the problem: we have a free parameter (λ) which may be
chosen so that equation (42) becomes a Camassa–Holm equation (if this is possible);
see equation (35). However, even with the inclusion of scaling transformations on û,
ζ and T , this cannot be done. This is only to be expected as it is clear that equation
(42) is not of the form (35) for there is no term that corresponds to uxxt .

To proceed, let us revert to the original variables, equivalent to (x, t), that we have
implied by the ε-only scaling. Thus, from (36), with Θ =

√
εt, Z =

√
εx, we have

∂

∂ζ
≡ ∂

∂Z
, ε

∂

∂T
≡ ∂

∂Z
+

∂

∂Θ
;

it is therefore convenient to multiply equation (42) by ε and then use this transform-
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ation. Thus we obtain

2(ûΘ + ûZ ) + 3εûûZ + 1
3
εδ2ûZZZ = −ε2δ2{(6λ+ 29

12
)ûZ ûZZ + 5

6
ûûZZZ}+O(ε3, εδ4), (43)

and, in view of equation (35) (see also (34)), we add

εδ2µûZZΘ − εδ2µûZZΘ

to the left-hand side of this equation, where µ is an arbitrary (real) constant. Further,
in the first term here, say, we use (43) in the form

ûΘ ∼ −(ûZ + 3
2
εûûZ ) (44)

to give

2(ûΘ + ûZ ) + 3εûûZ + εδ2( 1
3
− µ)ûZZZ − εδ2µûZZΘ

= −ε2δ2{(6λ− 9
2
µ+ 29

12
)ûZ ûZZ + ( 5

6
− 3

2
µ)ûûZZZ}+ O(ε3, εδ4). (45)

The CH equation can now be recovered, as we shall demonstrate, by making suitable
choices. First, to ensure that the coefficients of ûZ ûZZ and ûûZZZ are in the ratio 2 : 1,
respectively, we require

µ = 1
2

+ 4λ. (46)

Secondly, the (α, β)-property satisfied by equation (35) requires that

1
2
ε 1

2
εδ2µ = 1

2
ε2δ2( 3

2
µ− 5

6
)

and so µ = 5
6
, which gives (from equation (46)) λ = 1

12
.

Thus equation (45) becomes

2(ûΘ + ûZ ) + 3εûûZ − 1
2
εδ2ûZZZ − 5

6
εδ2ûZZΘ = 5

12
ε2δ2(2ûZ ûZZ + ûûZZZ ) + O(ε3, εδ4),

which can be written in the standard CH form by moving in the frame defined
by X = Z − 3

5
Θ (so that the term ûZZZ is removed in favour of ûZZΘ) and then,

introducing the scaling transformation

X → 1
2

√
5
3
X, û→

√
5
3
û (and Θ → Θ),

(simply to recast the equation precisely in the form (35)), this gives

ûΘ + 4
5

√
3
5
ûX + 3εûûX − εδ2ûXXΘ = ε2δ2(2ûXûXX + ûûXXX) + O(ε3, εδ4). (47)

Equation (47) is a Camassa–Holm equation, with error O(ε3, εδ4) and with 2κ = 4
5

√
3
5
;

see equation (3). (Of course, precise equivalence necessitates, formally, dropping
the error terms and then either setting ε = δ = 1 or applying a further scaling
transformation to remove ε and δ, i.e. (X,Θ) → δ

√
ε(X,Θ), û → û/ε.) This equation

describes the horizontal velocity component at a certain depth in the fluid; with
λ = 1

12
this corresponds to z0 = 1/

√
2. Thus, solving equation (47) (which, because

κ 6= 0, will not have peakon solutions) for û, the surface wave (from (41)) is given by

η =
√

5
3

(
û+ 1

4

√
5
3
εû2 − 1

5
εδ2ûXX

)
+ O(ε2, δ4). (48)

Indeed, to this order, we can reverse the process by using the resulting expression for
η in (40) and thereby obtain u(ζ, T , z; ε, δ) which, for selected z (6= 1/

√
2), will be a

solution of an equation of general Camassa–Holm-type, but not of the precise form
(35).
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It should be noted that it is the horizontal velocity component at a specific depth
which is described by a CH equation, not the surface wave, nor some averaged
horizontal velocity component. A representation of the surface in our formulation
is obtained via the nonlinear mapping, (48), or, equivalently, directly from equation
(39). This equation, we observe, is an extension of the KdV equation, which is itself
recovered as we let ε→ 0 at δ fixed. These results appear to correspond to those quoted
by Fokas (1995), although the connection with the CH equation is not developed
there. Further, it would seem that the analysis owes much to the GN approach since
the z-dependence appears to have been simplified. Certainly, the importance of the
horizontal velocity component at a specific depth is not discussed. We do comment,
however, that the introduction of a specific depth recalls one of the methods used to
extend the Boussinesq equation (in the context of water waves), see, e.g. Madsen &
Shaeffer (1999).

7. Some results
We start with equation (47), which we will write in the form

ûΘ + 2κûX + 3εûûX − εδ2ûXXΘ = ε2δ2(2ûXûXX + ûûXXX), (49)

where the error O(ε3, εδ4) is understood and κ = 2
5

√
3
5
. This equation possesses

solitary-wave and soliton solutions for all κ; the soliton solutions, spectral properties
and inverse scattering are described in Camassa et al. (1994) and in Constantin (2001).
Of course, the case κ = 0 is not relevant to the water-wave problem, but we could
use it as a simple indicator of what is possible. (The great advantage of this case is
that the solitary-wave and soliton solutions take particularly simple exact forms.)

The solitary-wave solution of equation (49) is a special travelling-wave solution:

û(X,Θ) = f(X − cΘ),

where c is a (real) constant; on the assumption that f, f′ and f′′ all tend to zero as
|X − cΘ| → ∞ (so that periodic solutions are excluded), we obtain

εδ2(f′)2 = f2 (c− 2κ− εf)

(c− εf)
. (50)

(The prime denotes the derivative with respect to X − cΘ.) Sadly, for arbitrary κ and
ε, it is not possible to integrate (50) and write the solution, explicitly, in closed form.
However, the special case κ = 0 evidently produces a simple result:

f = a exp(−|X − cΘ|/δ√ε), (51)

and, if we satisfy the jump condition (across X = cΘ) obtained by integrating equation
(49) once with respect to (X − cΘ), then we require a = c. The function (51), with
a = c, is the peakon solution (although, of course, this is not a proper solution of
the equation). For arbitrary κ (but clearly we require c > 2κ for solutions to exist),
equation (50) can be integrated (Camassa et al. 1994) to give f implicitly:(

F − γ
F + γ

)γ (
F + 1

F − 1

)
= exp(−(X − cΘ)/δ

√
ε) (52)

where

F =

√
c− εf

c− 2κ− εf , γ =

√
c

c− 2κ
, (53)
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ignoring the phase-shift in X (as we have also done in (51)), which would simply
replace X by X + constant.

In the context of our water-wave problem, and with the errors implied by using
equation (49), we may approximate (52) and (53) by allowing ε→ 0. With this choice,
c = O(1) and selecting c > 2κ, then either from equations (52) and (53), or directly
from equation (50), we find that

û = f ∼ a sech2 {β(X − cΘ)} , (54)

where

β ∼ 1

2δ

√
a

2κ

(
1− εa

2κ

)
and c ∼ 2κ+ εa; a (> 0) is the arbitrary amplitude of the wave. The surface wave, η,
is then obtained from (48); written in our (Z,Θ) variables, this is

η ∼ A sech2
{
α(Z −Θ − 1

2
εAΘ)

}
+ 5

8
εA2sech4 {α(Z −Θ)} , (55)

where

α ∼ 1

2δ

√
3A(1− 9

8
εA)

and

A ∼ a
√

5
3

(
1− 1

4
εa

√
5
3

)
.

Thus expression (55) is the solution (written in terms of (Z,Θ); see (36)) of equation
(39), valid as ε→ 0. To leading order, this recovers the classical solitary-wave solution
with amplitude A. Of some interest is the observation that a single solitary-wave-type
solution (sech2) for û generates both the sech2 solution for η, and its perturbation
(sech4). Conversely, if we take this solution for η and use it in equation (40) for u, the
choice λ = 1

3
− 1

2
z2

0 = 1
12

is the only one which eliminates the sech4 term, producing

a solution which is purely sech2 (to this order) for û. That is, for other choices of
z0 (0 6 z0 6 1, z0 6= 1/

√
2), the horizontal velocity component contains both sech2

and sech4 contributions, to this order.
In passing, we comment that the corresponding discussion which starts from the

peakon solution, (51), generates the associated surface wave (from (48)) and then
uses this to investigate Camassa–Holm-type equations for û(z 6= z0) is futile. Thus,
for example, (48) yields

η ∼
√

5
3
{ 4

5
c exp(−|X − cΘ|/δ√ε) + 1

4
ε
√

5
3
c2 exp(−2|X − cΘ|/δ√ε)},

but then the function

u = a exp(−|X − cΘ|/δ√ε) + εb exp(−2|X − cΘ|/δ√ε),
for suitable a and b, is not a solution of the more general equation that arises for û
with z0 6= 1/

√
2. It is straightforward to confirm that the only solution of this type

that exists is where µ = 5
6
, λ = 1

12
(z0 = 1/

√
2) and then b = 0. That difficulties are

encountered is to be expected: we have simply set κ = 0, which is inconsistent with
the set of equations that describe this water-wave problem.

One final, but significant, observation is that the procedure which has given us
equation (39) for η and, eventually, equation (47) for û, may not produce a uniformly
valid approximation. This becomes clear when we carefully examine equation (47);
for example, the term O(εδ4) is precisely the fifth-derivative term that appears in
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our extended KdV equation, (29). Now, if we have initial data which are consistent
with the scalings leading to equation (47), then an initial profile will evolve (at this
order) according to this equation. However, if this solution exhibits, for example, a
steepening of the waveform (which is known to occur with the CH equation; see
Camassa et al. 1994; Constantin & Escher 1998), then in an O(δ) neighbourhood of
where this occurs (say, at (X0, Θ0)), so that

X −X0 = O(δ), Θ −Θ0 = O(δ),

we see that the terms in equation (47) are O(δ−1), O(εδ−1) or O(ε2δ−1), and the omitted
fifth-derivative term becomes O(εδ−1). This result is no more than a re-statement of
the δ-scaling property of the original equations, (4)–(8), and leads to the recovery
of the extended KdV equation, (29). A reasonable interpretation of this property is:
whereas the third derivative inhibits the breaking associated with the nonlinear term
in the classical KdV equation, the fifth derivative becomes available to counteract
the singularities that may be generated by the nonlinear dispersive terms. Thus, on
sufficiently short scales measured by δ and for suitable initial data, the Camassa–
Holm approximation appears to fail. This non-uniformity is the mechanism by which
steepening (or perhaps sharp-peaked or breaking) solutions of CH, which might be
regarded as unsatisfactory, are, we presume, corrected and thereby may become more
acceptable solutions for the water-wave problem. Certainly, however the solution may
evolve or what elements are thought to be relevant, all this adds to the richness of
the behaviours that are accessible through even the simplest model for water waves.

For completeness, we record that the corresponding solution of the extended KdV
equation, (29), is

η ∼ a sech2{β(ξ − cτ)}+ ε 27
16
a2sech4{β(ξ − cτ}

where

c ∼ 1
2
a+ 71

30
εa2

and

β ∼
√

3a
4

(1 + 227
120
εa).

This has the same structure as solution (55) obtained via the Camassa–Holm route: the
coefficient of the fifth-derivative term merely contributes to the O(ε) terms throughout,
adjusting the coefficients accordingly.

8. Camassa–Holm in two dimensions
Now that we have in place a systematic derivation of the Camassa–Holm equation,

which demonstrates its validity within the water-wave problem, we may, with some
confidence, explore its role in other water-wave models. Thus, for example, we could
investigate how the CH equation appears in the problem of waves propagating over
an arbitrary ‘shear’ flow, or in two dimensions; we choose to develop (as an example
of what is possible) a CH equation in two dimensions. The resulting equation – in fact,
more than one variant exists – will be the CH counterpart of the two-dimensional
KdV equation, often referred to as the Kadomtsev–Petviashvili (KP) equation.

The governing equations are (4)–(8), with the y-dependence added and the velocity
component in this direction written as v. Both v and y are non-dimensionalized
exactly as for u and x; we retain δ and then scale y (and correspondingly v) with
respect to ε, in keeping with the approach usually adopted for the KP equation. In
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this case, we scale

y = Y /
√
ε, v =

√
εV ; (56)

however, because the CH equation retains terms as far as O(ε), an alternative (and
simpler) two-dimensional CH equation is generated by the scaling

y = Y /ε, v = εV . (57)

In either case, the resulting equations are

ut + ε(uux + ∆VuY + wuz) = −px,
Vt + ε(uVx + ∆VVY + wVz) = −pY ,

εδ2{wt + ε(uwx + ∆VwY + wwz)} = −pz,
ux + ∆VY + wz = 0,

with p = η and w = ηt+ε(uηx+∆VηY ) on z = 1+εη, and w = 0 on z = 0. Here, ∆ = ε
or ε2, depending on whether (56) or (57) has been used, respectively. (Of course, we
could regard ∆ as a third, independent parameter, and this constitutes an alternative
route.)

We follow the procedure described in § 6; thus we introduce ζ =
√
ε(x−t), T = ε3/2t,

w =
√
εW and redefine y = Y /

√
ε∆, and then expand. (The wave is therefore

propagating predominantly in the x-direction, with a suitable weak dependence on
y.) In the case ∆ = ε2, we obtain

2ηT + 3ηηζ + 1
3
δ2ηζζζ − 3

4
εη2ηζ + εVY = − 1

12
εδ2(23ηζηζζ + 10ηηζζζ) + O(ε2, δ4),

where

Vζ = ηY + O(ε).

The corresponding equation for û, on z = z0 = 1/
√

2, obtained by introducing ûxxt
and taking µ = 5

6
(see the derivation of equation (47)) is

ûΘ + κûX + 3εûûX − εδ2ûXXΘ + ε2VY = ε2δ2(2ûXûXX + ûûXXX) + O(ε3, εδ4) (58)

with

VX = ûY + O(ε). (59)

(We have used the additional scaling transformation Y → 1
2
( 3

5
)1/4Y .) The conventional

structure of the KP equation is evident here, the more so if we eliminate V :

(ûΘ + κûX + 3εûûX − εδ2ûXXΘ)X + ε2ûY Y = ε2δ2(2ûXûXX + ûûXXX)X +O(ε3, εδ4). (60)

It should be noted, however, that the y-dependence appears here via a term O(ε2);
in the usual derivation of the KP equation, this term would be O(ε) in the context
of equation (60). This corresponds to the case ∆ = ε and then, to be consistent with
equation (60), higher-order terms in y will have to be included; this particular aspect is
not developed here, but it is clear that the resulting equation will be considerably more
involved than (60), producing another variant of a two-dimensional CH equation.
(Other routes which lead to different higher-dimensional CH equations are described
in Holm, Marsden & Ratiu 1998; Kraenkel & Zenchuk 1999; Kraenkel, Senthilvelan
& Zenchuck 2000.)

The inclusion of the term in y allows the waves to interact at oblique angles,
although the scalings that we have employed imply that, in original variables, the
waves are very nearly parallel. For a solitary-wave solution, the effect of the term ε2ûY Y
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is not very dramatic: set û = f(X + lY ,Θ), integrate and impose decay conditions,
which produces a result equivalent to starting with our CH equation, (49), but with
2κ replaced by 2κ+ ε2l2. The solitary wave, (54), is then a solution, in the form

û ∼ a sech2{β(X + lY − cΘ)},
with β and c as before, and κ appropriately redefined. The possibility of our two-
dimensional CH equation being completely integrable is worth investigating, but well
beyond the aims of this study.

9. Discussion
We have presented a description of the current approach to the Camassa–Holm

equation, via the classical problem of water-wave propagation. In particular, we
have given a derivation of the Green–Naghdi equations, their representation in Lie–
Poisson Hamiltonian form and the special choice of submanifold that leads to the
CH equation for the horizontal velocity component. The two critical assumptions –
restricted z-structure in the GN equations and the choice of submanifold – have been
discussed; in addition, a KdV-type derivation, correct at O(ε), has been included for
comparison. The challenge was then taken up, to obtain the CH equation, in the
context of the classical water-wave problem, by using a consistent and appropriate
asymptotic approach.

We have shown that, by retaining both the shallowness parameter (δ) and the
amplitude parameter (ε), and assuming a double asymptotic expansion, the way is
open to develop a CH equation. The approach that we adopt is to retain terms O(ε),
O(δ2) and O(εδ2) – most significantly not O(δ4) – and then examine the horizontal
velocity component, u. We have demonstrated that u, evaluated at z = z0 = 1/

√
2

(where u = û), and with the judicious inclusion of the term ûxxt, produces a CH
equation for û. (The corresponding equation for the surface wave, η, to this same
order, is not one of the CH family.) A few comments about the solitary-wave solution
(both sech2 and peakon) have been included, particularly the vanishing of the sech4

term in the expression for u at the special depth z0 = 1/
√

2.
The results that we have obtained confirm that the CH equation does have a role in

the classical water-wave problem. This is especially exciting as the CH equation, like its
fairly close neighbour, the KdV equation, is completely integrable. However, we should
not lose sight of the fact that the CH may not be uniformly valid. The appearance of
singularities in some solutions of the CH equation have indicated that, in the context
of a model for water waves, the validity of this equation is open to question. As
we have seen, on sufficiently short length scales (measured by δ), the CH equation
might be replaced by the higher-order KdV equation. This observation generally,
and more particularly near the singularities themselves, provides the opportunity for
a careful analysis in the neighbourhood of the singularity. Such an investigation,
within the existing formalism leading to the CH equation, is essentially impossible
– the relevant higher-order dispersive contributions, for example, are missing – and
certainly a wasteful exercise. An area for future study therefore will be, based on
our derivation of the CH equation, the behaviour of the full governing equations in
the neighbourhood of any singularities of solutions of the CH equation. (We might
anticipate that the final conclusion is that the CH equation becomes more like the
higher-order KdV equation, but the precise details are for the future.)

Another aspect, which has been explored to a considerable extent in water-wave
theory, is the way in which other physical effects distort the simplest, relevant,
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completely integrable equation. So we are all familiar with the effects of variable
depth, underlying ‘shear’ flow and different geometries, for example, on the KdV
equation. Most of these problems are interesting and important, and many give rise
to new, completely integrable equations (e.g. KP, concentric KdV). Our derivation
of the CH equation, within the context of water waves, enables us to explore a
corresponding raft of problems for this equation. As a simple example, we have
presented a two-dimensional Camassa–Holm equation; this equation possesses the
same structure as the KP equation. The important properties of this equation have
yet to be explored (is it completely integrable?), but this does demonstrate that many
avenues are now open. Some of these will be pursued in the next phase of the work.

The author is pleased to record his thanks to Professor Adrian Constantin, who
emphasized the need for a close examination of the Camassa–Holm equation in the
context of the classical model for water waves. The author also wishes to acknowledge
the helpful comments of the referees, which have led to a more comprehensive
description of the existing ideas underpinning the derivations of the CH equation.
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